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STURM-LIOUVILLE PROBLEMS WITH SEVERAL PARAMETERS

LAWRENCE TURYN

ABSTRACT

We consider the regular linear Sturm-Liouville problem (second-

order linear ordinary differential equation with boundary conditions

at two points x = 0 and x = 1, those conditions being separated

and homogeneous) with several real parameters Al""’xN' Solutions

*4 to this problem correspond to eigenvalues A = (Al,...,AN) lying

on surfaces in ]RN determined by the number of zeroes in (0,1) of

; solutions. We describe properties of these surfaces, including:

é boundedness, and when unbounded, asymptotic directions. Using these
properties some results are given for the system of N Sturm-Liouville
problems which share only the parameters A. Sharp results are given
for the system of two problems sharing two parameters.

The eigensurfaces for a single problem are closely related to

the cone K = {A €]RN: Alal(x) * e XNaN(x) <9 for alli x in
[0,1]}, particularly in questions of boundedness. The cone K and
related objects are discussed, and a result is given which relates

cones with two oscillation conditions known as "Right-Definiteness"

and "Left-Definitmess'.
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Section 1: The regular Sturm-Liouville problem with separated,
homogeneous boundary conditions has been thoroughly studied. Re-
cent authors have considered the generalization of this problem in
which there are eigenvalue parameters Al""’AN instead of a

single parameter. This problem consists of the equation
£ (1.1.N) (py')' + (ga;(x) + ... Agay(x) + q(x))y = 0,

1 x '€ [o, 1], " = gi , along with the boundary conditions

cos a-y(0) - sin «-p(0)y'(0) =0
(1.2)
cos B:y(1l) - sin B-p(1)y'(1) = 0.
To make the problem regular we assume that P,q,3y,...,ay are

continuous and real-valued and that p is positive and con-
tinuously differentiable. To make the eigenvalue problem non-
trivial we will always assume that at least one of the aj's is
not identically zero. Sometimes we will call the aj's the

coefficients. i

We will discuss the problem (1.1.N), (1.2), and then we will
apply our results to a system of regular Sturm-Liouville problems
which share the same parameters kl,...,AN. The results for the
system are part of Multiparameter Oscillation Theory.

For a non-trivial solution y(x;A) of (1.1.N) we define

the oscillation number as the number of zeroes in (0,1) of the




function y(x;A). We define sets Sn = {XO € RN: there is a
non-trivial solution y(x;ko) of (1.1.N), (1.2) having oscillation
number n}. If X € S, for some n we call A an gigenvalue.

A number n" such that Sn =4§ for wm < n* and Sn # ¢ for

n > n® is called the minimum oscillation number. It will be

proven in Theorem 2.3 that n* always exists.

N as the set

Define the ray through a point 0 # 20 € R
é?(xo) = (0 ¢ > 0}. We will investigate the problem (1.1.N),
(1.2) in part by looking along rays; this amounts to writing
RN ~ (the unit sphere) x [0,»).

As a note on terminology, whenever a function is called

analytic we mean real-analytic.

Given the functions aj,...,ay, notate Ara(x) = Alal(x) +

+ ANaN(x) and define a cone K = {A GIRN: «a < 0 on [0,1]}.
It will be shown in Section 3 that the eigensurfaces are closely
related to this cone: Let Sn be any non-empty eigensurface;
then S, 1s bounded if and only if K = {0}. Let us suppose now
that K # {0}, so that Sn is unbounded. Let tmkm
AT =

€ Sn with

1 and B T e Since the unit sphere is compact, there
is a A% and a convergent subsequence A% 5 A% seeh s 29
will be called an asymptote, and we will say that Sn hds

'
asymptotics A" . AO. In Theorems 3.2, 3.3 it will be shown

that 0 + A% is an asymptote if and only if A e s dﬁfn oK.

For the two-parameter problem (N = 2) it will be shown in
Theorem 3.4 that the eigencurves are asymptotically parallel to
9, whenever K # {0}.

In Section 4, we will consider the system

» PO BN - 1> TR RN NG T/ 173, N, T I o AT St (A . oo et e """—'""\J
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Py (x;0)" + (Aqa;(x5) + .o+ Agasn(xy) + q;(x;))y; =0

]
o

cos &.'y.(0) - sin o,-p,(0)y}(0)

cos Bi°yi(1) - sin Bi-pi(l)yi(l) 0,

i=1,...,N, of regular Sturm-Liouville problems. For each of the

problems there will be surfaces S;. Notate A-ai*(xi) =
. N

Xlail(xi) B T ANaiN(xi) and define cones K, = {A» ER":

\-ai, <0 on [0,11}, €] = (X €R": A:a,, <0 on [0,11}, and

ai = BKi. In Theorem 4.2 it will be shown that when the surfaces

S; intersect nicely, for example if there are integers N; such

that f\§=ls; # ¢ whenever n. > N;, i=1,...,N, necessarily
‘ 1

the cones intersect nicely: (fﬁj*iaj) n QRN\int Ki) * @, 1=

i=1,...,N. For the two-parameter problem, Theorem 4.5 proves

that S; n Sﬁ £ 9 whenever n; > 0, n, > 0, as long as some

1 2
conditions on the cones are satisfied: 31 n ext KZ £ @

ext Kl n 82 # ¢, and a technical assumption. It turns out that
Richardson's result, Theorem 4.6, has as its corollaries all other
results for the two-parameter problem which have appeared in the
literature. An oscillation result is proven as Theorem 4.8, and
an example i$ given which shows that the result is new.

In Section 5 the cones are discussed. Theorem 5.1 states
that either C =¢ or C = int K, and this seems to be a new
result. In Theorem 5.2 a linear algebra result is given:

Assuming that (\T=1C£ + ¢, the condition known as "Left-
Definiteness" of Kallstrom and Sleeman [13] implies the condition

known as ''Right-Definiteness'.
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Section 2: For the Sturm-Liouville problem consisting of an

equation

(2.1} (py*')* t gy = @

along with boundary conditions

{2.2) cos .y (0) - sin a-p(0)y'(0)

"
[~

(2.3) cos B+y(1l) - sin B'p(l)y'(1)

[}
o

it is advantageous to make the Prufer substitution y(x) =
R(x)sin 9(x), p(x)y'(x) = R(x)cos 9(x). Problems (2.1)-(2.3) is
then equivalent (see Coddington and Levinson [2, pp. 208-213])

to the problem consisting of the equations

(2.4) R'(x) = (p(x)7! - g(x))R(x)sin 6 (x)cos 6 (x)

1

(2.5) 0" (x) cosze(x) + g(x)sinze(x)

[}

p(x)"

along with the initial condition

(2.6) 0(0) =

and the end condition

(2.7) 9(1) = B(mod ),

— g i  aa A —



Without loss of generality 0 <& < T and 0 < B < 7; it will be
shown below that without loss of generality B8 > 0.

At any x where 6(x) = O(mod ™) the corresponding solution
y(x) has a zero, and vice-versa. Whenever 6(x) = 0(mod m)
necessarily 60'(x) = p(x)-1 > 0, so the graph of the function
U(x) versus x can cross the lines 06 = O(mod m) only in the upward
direction. From this it follows that if O(XO) > km for some
integer k > 0 then necessarily 60(x) > km for all x > X,
In particular, 0(1) > 0, so that without loss of generality
B > 0. We also note that nm < 6(1) < (n+1)" if and only if the
corresponding solution has oscillation number n.

The most basic result in Sturm Comparison Thecry compares

the solutions of two initial value problems:

Theorem 2.1 (Coddington and Levinson [2, p. 210]): Suppose that

there are two initial value problems of the form (2.5), (2.6),
that is, choices pi,gi,ai and corresponding solutions ei’

oL B R G, > G, Py < Pps and g8, 2 89> then ez(x) > el(x)
for all x > 0. If further g, > 8, except possibly at isolated

points, or if @, > @, then 92(x) > 91(x) tor all x > 0.

From this result we can conclude that the solution of the problem
which corresponds to (pz,qz,az) has an oscillation number at least
as great as that of the solution of the problem which corresponds
to (py,qy,%;)-

Under a strong hypothesis it is possible to prove the existence

of eigenvalues for the one-parameter problem which consists of the

equation




(2.1.1) (py")"' + (Xja;+q)y = 0

along with boundary conditions (1.2).

Theorem 2.2 (Coddington and Levinson [2, p. 212]): Assume that

a; >0 on (0,1]. Then, for every integer n > 0, there is a

unique eigenvalue X? with the corresponding solution to (1.1.1),
(1.2) having exactly n oscillations. Further, G(I;AI) + 0 as

)\1 > =00,

When g(x) = g(x,A) = X-a(x) + q(x), A EiRN, we will denote

the corresponding solution of (2.5), (2.6) by 6(x) = 8(x;A).
Theorem 2.2 is equivalent to saying that when N = 1, a, >0,
there is a unique eigenvalue XT with G(I;K?) = TR0 BB

For arbitrary N it is known that U(1;A) dis an analytic

function of A; see Hale [1, pp. 21-22]. From this we have

Theorem 2.3: The minimum oscillation number always exists.

Proof: Define the function ¥: RV = (0,%): A b 0(1;A). Since

RN is connected, WGRN) is connected and hence either a single

point or an interval, possibly infinite to the right. Since we

assume that at least one of the aj is non-trivial we can show

that ¢GRN) is an interval which is infinite to the right: For
it al(xo) is positive (exactly the same sort of argument will

apply if al(xo) < 0) say, then al(x) is positive on some

small subinterval about Xg e Thus, e(xo;k) + ® as Al + © when
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XZ”"’AN are held fixed. It follows then that ¢(A) » += as
Xl + o when AZ""’AN are held fixed (recall the discussion

on page 5). One then defines n® = min{n > 0: n7 + B € WGRN)}..

The results in Theorem 2.3 has been proven for the one-
parameter problem by Eisenfeld [3] and Faierman [0] using more

explicit arguments. Those arguments yield more information about

the eigenvalues for the one-parameter problem, for example that

: n : A :
there is a sequence A € Sn that is monotonic, 1i.e.

AV e a0 e s 5%, or AT < R

*
FoE s > 1

To close this section we will discuss the convexity of the
eigensurfaces. A region R ciRN is called convex if
ta + (L-t)p € R whenever A,p € R and 0 < t < 1. A surface
S which is the boundary of a region R will be called convex if R
is convex. Let us define now regions Rn = {A E.RN: B} | %

nm™ + B}, and note that S, 1is the boundary of R, - The following

example shows that the eigensurfaces Sn are not necessarily

convex:

Example 2.4: Let q =0, @ = 0, B = m, and consider the two-

parameter problem

yR) *® krale)yix) = 8, X € 18,1

FRvY= Rl = N

where al(x) =1 for 0 < x < % : al(x) = 0 for % < x <1 and
X

" 1 5 o . )
az(x) =0 for 0 < x < 3 az( y = 1 for 7 <X < ls For cen




venience in the calculations the coefficients aj chosen are not
continuous. The result of non-convexity will not be disturbed by
3 the discontinuity of these aj because these aj can be

approximated arbitrarily well in Ll(O,l) by continuous functions,

and the angle function 9 depends continuously on the 2 in
L, (0,1).
Take Al = (87%,0), 2% = (0,87%), and 13 = (alaalysz -
= (4“2,4ﬂ2) = (a convex combination). We will show that
XI,AZ € int R, and that X7 g S, = 9R,. We calculate the solu-

&

A3

tion y(x;A°) = (Z“)_lsin(Zﬂx), so that € S,. We also

calculate the solution

. i|
w lSin(M) s Ut x>
1 2

y(x;27) =

=l = 5 ; . : i 1
w "sin(w/2) + cos@/2):(x - 3), 35 <x <1
A

where w = 23/“H, from which we conclude that y(x;Xl) Lhas

exactly one zero on (O,%] and does not vanish on (%,1]. So

Xl € 1nt RZ' One can conclude the same for Az.




Section 3: For the N-parameter problem (1.1.N), (1.2) the eigen-
N,

surfaces Sn are closely related to the cone K = {A € R

A-a(x) <0 Vx € [0,11}. Recall that A%, [A%] = 1, is an

asymptote for Sn if there exists a sequence tmkm € Sn’

A" =1, t, > ®» with e 3% e S, be any non-empty §

eigensurface. Then (i) Sn is bounded if and only if K = {0},

and (ii) 0 # L is an asymptote for S, if and only if

A% e 3 = 8E.
Part (i) will be proven in Theorems 3.1, 3.3, and part (ii)

will be proven in Theorems 3.2, 3.3.

Define T(A) = max T-a(x). Note that T(-) 1is continuous,
0<x<1

because A™ - AY implies )t B X0°a uniformly on [0,1], and

note also that X € K if and only if TtT(X) < 0.

Theorem 3.1: K = {0} implies that every non-empty Srl is bounded.

Proof: K = {0} implies 7t(A) > 0 for all X # 0, in particular

for all |A| = 1. Since the unit sphere is compact and 7T(:) is

continuous, there is a TO > 0 such that 7T(A) > TO for all

Al = 1.
Suppose now that there is an n with S_ unbounded. Let
n
thm € S_ with t -+ = and [A™| = 1. By taking a subsequence,
n
we may assume that A" » A% for some |A0| = 1. Since A™Ma =

Ao-a uniformly on ([0,1], there is an interval IO’ of non-zero

length, and an integer M such that A™-a(x) > TO/Z for all

€ int I

x €1, and for all m > M. If x

then 9(x0;tmkm) + @

0 0
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as m » <, This implies that 8(1;t Am) +® as m + « (recall
P m

the discussion on page 5). This gives a contradiction. [ ]

Theorem 3.2: If A0 is an asymptote then XO € 3.

* . m
Proof: For some n > n” there is a sequence t A

0

€ S with
n

IA™] =1, t > +» , and A™ > A

» , by the definition of

asymptotics. First we will show WV e K, and then we will show
that A" ¢ int K.

To show that AO

€ K, it will suffice to show that T(Am) + 0
as m - ., Assume to the contrary that there is a ¢ > 0 and
subsequence m' » » with T(Am') > 6. Just as in the proof of
Theorem 3.1 we can conclude that 0(1; tm,km') + ® as mn' + o,
giving a contradiction.

Next, we will show that A% ¢ int k: Let wle S,x SO

that 0(1;u0) = n*1 + B. Translate the parameters by uO and
consider the equation (py')' + (i'a + (u0°a+q))y = 0 along
with boundary conditions (1.2). Let é(x;k) be the corre-
sponding angle function for this problem, and note that it has

2 A | e a1 e :
eigenvalues Am tmk u tm(km t "u ). Define the

m
T - t—luo, and note that it has the same asymptote

sequence u™ =
X as does the sequence A™. In other words, a translation
does not affect the asymptotics.

So let us suppose that A € int K. We note that A € int K

implies that i-a < 0 with inequality somewhere on (0,1}, and

this implies that 5(1;5) < 5(1;0) by comparison theory.' (To

see this, use Theorem 2.1 (Comparisons) on a small subinterval




|

—

11

(XO’XL) on which X-a(x) < 0 so that J(xl;i) < s(xl;O). Then
use Theorem 2.1 on the subinterval (x1,1] with 0 ~;X) having
smaller initial data then 5(-;0).) Since A9 € int K and

um g AO

, eventually u™ € int K, so that eventually
i 0136, = 9(1tu™) < 6(1;0) = 0(1;u%) = n*1 + g < nm o+ B,
This gives a contradiction with thm €ES.. B

n

Theorem 3.3: K # {0} implies that every eigensurface is un-

bounded (hence has asymptotics) and that 3" is an asymptote
)

whenever IA(I =1 and 2% € 3,

Proof: Let n® be the minimum oscillation number. First we

will discuss Sn for n > n*, and then Sn* will be discussed

in two distinct cases.

3 Recall that () = {th: t > 0}. Since 1(A) < 0 if and

only if X € K, for any fixed X € ext K there exists

n*(K) = min{n > 0: Sn N RA) £ ¢} < ©, As in the proof of
Theorem 2.3, A € ext K implies S, N R(A) £ ¢ for all
n > n*(\), by using the distance along the ray as the only para-

meter.

Let us assume that the parameters have already been trans- |

lated by a uo € S «» as was done in the proof of Theorem 3.2,

so that ©(1;0) = n*1 + 8. This translation in no way affects

the existence of asymptotics.




Choose any x% € 3 for which IXOI = 1; this is possible
because K # {0}. Choose any sequence A" 5 A0 with |Am| =1
and A" € ext K; this is possible because K must be contained
in a half-plane. We will show that for any fixed n > n* there
is a sequence t > 0 with tmkm € S, after which it will be
easy to show that necessarily tm + +o 5o that a0 is an
asymptote.

To show the existence of the tm’ it suffices to show that
n*(Xm) < (l+n*) vV m, because the set {e(l;tkm): t > @) Ais fox
each fixed m an interval infinite to the right, as in the proof
of Theorem 2.3. Let V¥(t) = max 0(1;tkm), which is continuous
for t > 0. Since W(t) =+ n*ﬂm+ B =10(1;0) as t >~ 0+, there
exists ty

Suppose now that we have fixed an n > n* and found the

> 0.9, BIe X" < (1a*)E v

sequence 't > 0 with thm € Sn’ as was shown to be possible
by the arguments above. If Ko ¥ fails to hold then there
is a bounded subsequence {tm,} which can be assumed to be

convergent. Say that t >t > 0. Then

0(1;t, A™) » 0(1;T0) < 0(1;0) = n*n o+ 8

by comparison theory and x0 € K. This gives a contradiction

; m *
with tml € S,» m>n.

To show that the conclusions hold for n = n* as well as

* . g s 5 g y
fOr 1N > 1 we will consider two distinct cases: (i) there exists

A such that O(I;X) < n*n s B, or (ii) there does not exist such a

~

In case (i) we merely translate the parameters by A instead of

x.
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0 , - . R -
M and the arguments above work, with only minor modification.

In case (ii) necessarily there does not exist a A with XA-a <0

with strict inequality somewhere on [0,1]), for if there did exist

such a A then 0(1;X) < 0(1;0) n*n o+ g by comparison theory.

Because A € int K implies A-a 0 with strict inequality some-

A

where on [0,1], int K=¢ and K = 9 = {A: Ara =0 on [0,1]}.
But then (u0+A) € Sn* for all A € 3! Thus the conclusions also

hold in this case. B

For the two-parameter problem we have eigencurves, and we
can say more about the asymptotics since the possibilities for
unbounded sequences of eigenvalues are, as one might expect, more
limited than for N > 3.

>
We will say that an unbounded set Q < IR™ is asymptotically

parallel to a ray f@(ku), IAOI « 1. #f for all ¢ > 0 there is an

R >0 such that tx € @ n {|u] 2 R}, |]A] =1, t > 0 implies that
lk-\nl < ¢, Suppose now that we have a convex cone C c R, It
is not difficult to see that C is bounded by at most two rays,
so that 3C = @' U #", with possibly #' = ", We will

.

p
say that a set S ¢R” is asymptotically parallel to aC if

there are (non-empty) unbounded sets S',S" such that S is the dis-
joint union of S' and S" and such that §S' is asymptotically
parallel to @' and S" is asymptotically parallel to @#@".

In defining "0 is asymptotically parallel to a ray..." we
do not require that Q is an arc; in fact, within the possibilities
allowed by the definition we may have int @ # ¢ or Q = (the

disjoint union of two arcs).




In the A-plane every non-trivial vector A = (AI,AZ) has

the representation Xl = r*cos ¥, Xz = r*sin Y, with r > 0 and

0 < § <2mw, With these restrictions the r,Y are uniquely de-

fined, so we have a well-defined map Y:ZRZ > [0,2m): X b Y(X).

Theorem 3.4: For the two-parameter problem assume that K # {0}.

Then every non-empty eigencurve Sn is asymptotically parallel

to 9 = JK.

Proof: Let 3 = A" U A7, and let A" be such that @* =
A(%) = {tA": t > 0}, |A"| = 1. It is possible that ®@* = #°.
Let yt = y(A:) € [0,2m). Without loss of generality Y~ <y
Let n® denote the minimum oscillation number, as usual. Let
uo € Sn*’ so that U(I;uo) = (n*"+B).

There are only two possibilities for the cone K, because it
is convex: case (i) K = {tx: t > 0, v < y(2) < y*}, or
case (ii) K = {tx: te€ R, Y(A) = Y } = 3 = {tA: t >0, Y(A) =
+y~(mod 2m)}. Case (ii) can occur only when a,,a, are linearly
dependent. If a, is non-trivial, then case (ii) can occur only
when ay is of both signs.

Case (ii) is simple and will be discussed first: Since ay
is of both signs, there are eigenvalues u;, n > n*, for the
one-parameter problem which consists of the equation
(py')' + (ua1 + (uo'a+q) y = 0 along with the boundary conditions

(1.2). In fact, from Theorem 2.3 (Minimum Oscillation Number)

and the arguments contained in the proof of that theorem

ot e i
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(see also Faierman [ 6 1) we can conclude that for n > n* there
. L+ . +
exist positive integers j (n) and eigenvalues 0, x ? 0,

’
k=1,...,j (n) and M <0, k=1,...,j7(n) for this one-
parameter problem. For the two-parameter problem, let ay be
non-trivial and let a, = Eva for some & € R. Then the two-
parameter problem which consists of the equation (py')' +

(A1a1+l2a2+q)y = 0 along with boundary conditions (1.2) has

""eigencurves"

jf(n) 0 +
Sn 5 (Uk=l {u = (xly}‘z): )‘1 * C'Az = l-ln,k})
u (UL 0" » ga)s &) ¢ T3y =g 0B
for n > n*, i.e. a finite union of straight lines. Also,

Wl s o=l euruenrc S,x- In fact, all of these straight

lines are parallel to 3 = (a straight line), and the straight

line uo + 0 divides Sn into two groups of straight lines for

n > n*., of course, this is an unusual case! If we define regions
R.= {td: £ >0, v - (8/2) < ¥(A) £ v < (n/2), (mod 2%}},
R, =]R2\R_, and denote S = S, M R,, then we have a decomposition
Sn = st v S, as desired in the conclusions of this theorem.

Let us consider case (i) now. From the discussion within

the proof of Theorem 3.3 we can conclude that there is a A with

*

6(1;%) < (n*m+g). Fix now any n > n. sl

Let be chosen

such that Ikm’tl =1 and YO\™®) = y*-(1 i%ﬁ . (Here we

assume that Y > 0, which can be accomplished, if necessary when

Yy =0, by a small rotation of RZ while leaving Y+ < 2m,) Note

L

ey = R TR 1) (M P COSESENTEES L . N T R I e~
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that A™* € ext K. By the arguments in the proof of Theorem 3.3,

there exist t > 0 such that u™* defn (X e +Xm’t) € Sn’

+
m, = ’

m > 1, and necessarily tm o gas m+e, €=+ or =,
it ’

Define now R_ = {A + tA: t > 0, 0 < Y(A) < Y7},

i Y(A) < 27m}, and denote $* =S 0R..

R, = {A + th: £ >0, ¥ e +

+

Because 0 (1;A+A) < 6(1;X) < (n*m+B) whenever Y < Y(X)

A
=
-

we have S_ N {tA: t >0, ¥y <Y(A) <Y} =9. So S =58 us,

n

‘A

+ or -. If we can show that S

and S® is unbounded for e
is asymptotically parallel to # , then the same arguments will
show that S* s asymptotically parallel to 5%’, and the proof
will be complete.

Suppose to the contrary that S  is not asymptotically

parallel to 4 . Then there is a sequence (X+tmkm) € S with
A" =1, t >0, t ++=, and (Xm+t$1i) # A", This implies
that A™ 4 A", Since the unit sphere is compact, there is a

convergent subsequence, say = . AO. By Theorem 3.2, either

A0 = A or A0 - A", By the definition of S, Y(A™ < y.
Because of this Y(AO) € [0,y 1. This shows that Y(AO) - Y 3
since |X0| = 1, necessarily A0 = A", This gives a contradiction,
and completes the proof of the theorem. W

Other work on asymptotics can be found in Faierman [7-9].

——
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Section 4: Let us define for a given problem (1.1.N), (1.2) the

minimum distance f = min, ¢ [X\| for n > n*. It is not
n

n

difficult to show that the minimum distance is always achieved,
i.e. there exists A" € S, with Py = A\, by using the repre-

sentation tA, |[X| = 1, for all elements of S,+ We have also

Lemma 4.1: By * & a5 |,
Proof: If not, there is a subsequence n' » « and eigenvalues

AR € Sn' with Iln'l = Py bounded. Since there are con-

stants k < o, Py > 0 such that k > Ikn'-a(x) + q{x)| for all

n' and for all x in [0,1] and Py < p{x) for all x ia [90,1],
we have d(l;xn') < (k/po)l/2 + T for all n', by Theorem 2.1

(Comparisons). This gives a contradiction with n' -+ o, | ]

Suppose now that we are given a system of regular Sturm-

Licuville problems of the form (1.1.N}, (1.2), i.e. for

= 1,..:,N
f
(Pyyi(x))" + (Apag (xp) + oee + Agan(xg) +a;(x))y; =0
(4.1) <« cos ui-yi(O) - sin ai-pi(o)yi(O) =0
= 0. |

_cos Bi-yi(l) - sin Bi-pi(l)yi(l)

So that each of these problems is regular we assume that, for
M TR | Pi»d;53;1s--+»a;y are continuous and real-valued

and that P is positive and continuously differentiable. Recall

the notation A-aj*(xi) = Xlail(xi) ¥ axe XNaiN(xi). Without

loss of generality
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we assume that 0 < B, < % and 0 < Bi < m. Corresponding to

th

the i problem in the system is an angle function Gi(xi;k),

eigensurfaces S;, minimum oscillation number n;, minimum
distances p;, and cones K = {A €ZRN: A'ai* <0 on [0,1]},
- N
9; = 3K,, and G, = {A €eR": X-ai* <98 on [0,1)}.
In this section, we will discuss oscillation theorems for

the system (4.1), specifically the existence of eigenvalues

0
A

A= at which simultaneously each of the problems in the

system has a non-trivial solution. Often we seek an eigenvalue

for which the ith problem has a non-trivial solution with a

&
specified oscillation number n,, i=1,...,N. The first result
does not appear in any of the modern literature:

h\

T_ Theorem 4.2 (Richardson's Necessary Conditions): Suppose that
for each i =1,...,N there exists a sequence of integers
{ni,m}m=1 with ni,m - as m + « and such that

N i ) ; o

r]izlsni + ¢ for all possible choices of n, € {ni,m}m=1’
i=1,...,N. Then necessarily for i =1,...,N

E N
(4.2) (rwj*iaj) N @ int~K,) # ¢.

Proof: For convenience take i = 1. Choose for each m an

eigenvalue

> 0.

m 1 j . m, _
nt € S, - L S ) with [A7] =1, t

1,m LW

We can assume, by taking an appropriate subsequence, that

Py s o i
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Al 0 for some |A0| = 1. BSince ¢t . 2 pl +® as m -+ @
m- n
1,m
(because of By o> ® 858 B+ = and Lemma 4.1), necessarily
b
Ax? g fﬁj>2 3;, by Theorem 3.2. If A% € int K, then there is
an M > 0 with A™ € int Ky for all m > M. Then U(I;tmkm) <
9(1;0) for all m > M, giving a contradiction with s o v, [ ]
’

We note in particular that if there are integers N; such

that f\N_ s' % ¢ whenever n. > N¥, i = 1,...,N, then the
i=1 n, 1=

conclusion (4.2) still holds. The reader may wonder if in (4.2)

N

the set GRN\int Ki) can be replaced by ext Ki = R \Ki). The
answer is no, because of the following example: Let
all(xl) alz(xl) sin(ﬂxl) cos("xl)
8a14%3) B550x5) ) -
so that Ky * A((-1,0)) = (a single ray), K, = {(Al,kz): XZ < 0}.
We have Kl = K2 so that 31 n ext K, = ¢. But for the system
3 yg(xl) + (Alsin Xy * Azcos "xl)yl =0
y1(0) = y;(1) =0
Y25y} * Agrg =4
| 72(0) = y,(1) = 0

1
n

there exists A™™ € S n Si for all n > 0, m > 0: Choose
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AR o BB with A" = (mm)%, and find A}'" for the

problem yg * (X?’msin BXy * (mﬂ)zcos "xl)yl =0, yl(O) = yl(l) = 0.
It is possible to find the A?’m by proving a stronger version of
Theorem 2.2 with the hypothesis '"r > 0 except possibly at
isolated points'" replacing "r > 0". It is not too difficult to
prove this stronger version of Theorem 2.2.

At present there are several results known which state
sufficient conditions for the existence of eigenvalues for the
system (4.1) of Sturm-Liouville problems. We will present these
results, prove Richardson's theorem on sufficient conditions for
the two-parameter problem, show how the other two-parameter re-
sults can be deduced as corollaries of Richardson's theorem, and

present a new N-parameter result which is not covered by results

previously found in the literature.

L & N ;
Define |A|(x1,...,xN) = det(aij(xi))i=1 and the minor sub-
i=1
determinants
. = alix %: ni%eias®) = 13T deves. x. M)

] T el R rst r' r#i

S#j

known as the '"cofactors'". Define Right-Definiteness as the

condition that |[A[(*) be sign-definite (either always positive

or always negative). Define Left-Definiteness as the two conditions

(4.3) q; <0, @, <7/2 < B, for i=1,...,N

IRV - i it o




(4.4) There exists uo eRY such that Z?zlaf.ug >0 for i=1,....N

1))

Theorem 4.3 (Faierman [5, Chapter 2], Ince [12,pp. 248-251]): If

Right-Definiteness holds then for all choices of n, > 0 there 1is

) ’ N ol
a unique A € f?i=15ni.

Theorem 4.4 (Kallstrom and Sleeman [13], Sleeman [19,20]): If Left-

Definiteness holds then there exist infinitely-many N-tuples

B y . N 2l
(nl,m""’nN,m) of non-negative integers such that r\i=15ni ’ £ ¢.
b

Theorem 4.5 (Grogug, Neuman, and Arscott (10, p. 434], Sleeman [16,17]):

For the two-parameter problem assume that Ci

Ci N ext K, + ¢, and ext K; n C, #+ ¢. Then Si n s

n C2 *

att n. = 0, n, > 0.

Theorem 4.6: For the two-parameter problem assume that there

exists u’) such that uJ-aj* < 0 with strict inequality some-

where on [0,1], j = 1,2, and 81 n ext K, # ¢, ext Kl n 82 £ ¢,

Then there are integers Nj such that S; n Si ¥ ¢ whenever
g Z

® ®
n, > Ny, ny, > N,

Theorem 4.6 was stated in Richardson [14, pp. 32-34], and a

geometric proof was given there; however, Richardson assumed that

the coefficients aij are analytic and specified the Dirichlet

boundary conditions yi(O) = yi(l) =0 (di E g, Bi = m). These
restrictions do affect the generality of the discussion in

Richardson [14].

Before proceeding with the proof of this result we need




r
b}

Lemma 4.7: If there exists pl such that ul-al* < 0 with

strict inequality somewhere on [0,1] the Si is an analytic

S e S8

curve for n > n*,

Proof (of the Lemma): After a rotation which sends ul into the
positive Al-axis we have app < 0 with inequality somewhere on
[0,1]. To prove the result it will suffice to show that there
exist functions ¢n and sets Qn IR such that Si =
{(@n(kz),xz)l AZ € Qn}, for all n > n".

0 : : 0 1 :
= {\Y. .
Let Qo {\2. there is a A, with ( 1,\2) € Sn}. Since

1
t)(1;>\1,)\2) is strictly decreasing in Al for each fixed AZ
(by comparison theory; see the arguments on page 5), for every
Kg € Q there exists a unique Xg such that XO = (X?,Ag) € Si.
;‘ Define Qn(lg) = Xg in this way. Fix an n > n® and consider

the equation UY(1;A) - (n7+B) = 0. By the Implicit Function

Theorem, to show that @n(-) 1s analytic it will suffice to show

4

that GU(I;XO)/BAI < 0 whenever iv e Sn'

It 1s not difficult

to calculate that

1
20 (1317700, = w17t J My (x)ag; (x)sin®e (x;10)dx
0

= -1 0
where u(x) = exp(—J [-p(s) +* X
0

'al*(s) + q(s)]lsin Zu(s;ko)ds)
is a positive-valued integrating factor. Hence, Bﬁ(l;ko)/akl < 0.
If 30(1;AO)/3A1 = 0 then necessarily 0 (x;20) = 0O(mod ™) for |

all x where all(x) < 0. Since all(x) < 0 for x in some

subinterval of [0,1] there is a contradiction with the fact that
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O(XO) = O(mod m) implies U‘(xo) > 0. g

Somewhat weaker versions of this lemma have appeared in

Sleeman [16], Faierman [ 5], and Richardson [14,15].

Proof (of Theorem 4.6): Since there is a ul such that

ul-a < 0 with strict inequality somewhere on [0,1], necessarily

Kl + {0}. By Theorems 3.3, 3.4 we can conclude that for n > nI

the curve Si is unbounded and asymptotically parallel to the ray

E 8 = * . - .
or pair of rays which forms 31> where ny s the minimum

oscillation number for the first problem. Similarly, the S

N * 3N

have the same properties with respect to 32 for all n > n
Recall now from the proof of Theorem 3.4 (see page 14 ) the
definition of Y(+) 1in terms of polar coordinates, i.c.,

¥: X = (P cos ¥, * sin Y} b+ Y € [0,27%),

[}

Let 3. = . v 9?; (the union of at most two rays),

J J

g?j = g@(kj) with jA;j

assume that Yj < ¥

1, and y; = Y(Ag). For convenience

Y, j =1,2. We can assume that Yi < Yi’

J
without loss of generality.

We note that if Yi = Y, then either Kl ~ KZ or KZ & Kl,

contradicting the hypotheses 81 i ext K2 # ¢ and

ext K; N 3, # ¢. So, without loss of generality, Yi < Y,. Also,
+ +* » .
Yy < Ygo because if otherwise then K2 — Kl'
Let us define now ?; = Y; and ?3 =y, * 2N, j o= 1,2

The hypotheses imply ;I < 7; < 2u < ?i <Y, Let
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n = max{Y, - YI, ?i - ;;, ?i - ;i}/4.

The cone Kl can take either of two forms:

K, = {tA: t >0, ¥ < ¥Y(QA) < ¥}

or

K. = {#i: & G, Y&} = 2% },

Vv

The latter can only occur when aj,a, are linearly dependent and

K, = al = {\: X-al* =0 on [0,1]}. The hypothesis "there

exists ul such that ul-al* < 0 with strict inequality somewhere
on [0,1]" precludes the latter possibility. A similar statement
holds for K,.

Let now N; = max{n > 0: Si n Kj *+ ¢} for j =1,2. Be-

cause Uj(l;°) is bounded on Kj by Gj(l;O), we can conclude

*
that N] S oA |
* |
|

Let us fix any ny o> N; and n, > N;. For any set G c:mz

define Y(G) ={r(g): g € G}. By the definitions of the N; we

- 5 - ’j * = 'j = 5
have that y(sn_) n [YJ,Yj] ¢, so that Y(bn_) - [O,Yj) U (yj,Zn)

J J
for j = 1,2. The inclusion is, in fact, equality because S%.

is a continuous curve, by Lemma 4.7 proven above, and asymptotically

parallel to the ray(s) of aj, by Theorem 3.4.

Let us define now two "wrapped-around-[0,2m)" forms o Y(-) ;

appropriate to S1 ,S2 y respectively. We let

L
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Y(0) A €SI and Y € (y;,ZN)

3y = e,
Y. (A) j ;
J 21 + Y(A), A € 87 and Y(X) € [0,Y;).
J

With this definition we have YJ(S%') - (?},?3) c [0,4m).
J g
Recall the choice of n. Because Si. is asymptotically
parallel to aj, j = 1,2, there is an R > 0 sufficiently large

that

[A\] >R, A € S implies Y.(A) € (¥:i,Y:+m™ U (V:-n,¥:)
ik "j ] J J J
\ and also there exists u; such that u; € S% . |u§| = R, and

<= ~ ~ ~ = ~
Yj(uj) € (Y},Y}+ﬂ), Yj(uj) (& (Yj-ﬂ,Y.). We have, by the

J
definition of n, the inequalities

-+ + + ~+ ~ - - -
(4.5) ¥ < Yy(ug) < Yp(uy) < Yy +# 0 <Yy - n <Y (H) < Yy(H,).

* Define now two curves Zj = {(Yj(k),|X|): A E S% b in
J
[0,4T7) X (0,»). These curves are analytic because Sél,sﬁ
9

e

are analytic. This last fact was proven in Lemma 4.7 using the
hypothesis '"there exists ul  such that ...". We note that

(i) OjGH,R) €5y, €=+, j=1,2, and (ii) [A] <R whenever

A € S%'and Yj(k) € (?;*n,?j-n). From these two facts we will

conclude that there is a point (Y*,r") € 21 n EZ’ which implies

1

there is the point (r*cos y*, r*sin v*) € s n Sﬁ , as desired.

o 2
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We focus our attention on the interval I* = [?;+n,7i-n],
and define 4; = Lo :v;0) € 1*}  {x: |A] < R}, by (ii).
One may refer to Figure 1 found on page 38. If we assume that

21 n Y, =9, then either (a) A lies above A,, or (b) A2 lies

1
above Al' Here by ”Al lies above A," we mean that A€ Aj
‘ A - : 2 . :
* and y, (A7) = ¥,(17) implies {All > [kzl. In case (a), continuing

along the curve El above I, we conclude that there is a

-

u o€ 21 such that v, (¥) = Yz(u:) and |u| > R, giving a
contradiction with (ii). In case (b), continuing along the curve
r E, above El we conclude there is a u € 22 such that Wz(u) =

-

Yl(ui) and |u| > R, giving a contradiction with (ii).

3 This concludes the proof of the theorem. W
H We note that the statement "3, 0 ext Ky # 9 and ext K; n
32 + 9" is quivalent to "Kl ¢ Xz and K, ¢ Kl”.
It will now be shown that for the two-parameter problem
Theorem 4.6 is the strongest result in the literature. Aside
’ from this we note that, upon assuming there exist uj such that

uJ-ni* < 0 with strict inequality somewhere on [0,1], j = 1,2,
Theorem 4.6 is '"close to sharp" by recalling Theorem 4.2

(Necessary Conditions) and the example which follows it on

page 19,

It will be shown in Section 5, that C % ¢ implies

int K = C, and we will use this fact in the discussion below.
We note also that C # ¢ implies the minimum oscillation

*
number n- = 0.




First of all we compare Theorem 4.6 with Theorem 4.3

(Right-Definiteness). It is known that |[Al sign-definite
implies that Ci nc, #+¢ and Ci

¢ KZ’ because if Kl < Kz we

n C; # ¢, from Sleeman [18,

pp. 204-205). To begin with, K

1
would have ¢ + C; n Ci c Ci = int K, © K, © ext CS and
CS n Ci c C;. The same argument shows that KZ ¢ Kl. Theorem
4.0 shows that there exist N? > 0 such that S; n Si, # 0
whenever ny Nt, n, > N; From Theorem 2.2 thcic exists a
A0 € Ci n CE sufficiently large that Uj(l;O) < ﬁj for the

translated problems

-1 2 0 - d
92 (XN.ip) = ; 030, + (u*a + (A .a+ [S s RIS
jixgin) = pyieaatC, ¢ (uvn + (A7.80q))sin"0, ax;
j = 1,2. With this we have NY = Nf = 0. This gives the conclusion

of Theorem 4.3, except that no uniqueness is shown.

Second of all we compare Theorem 4.0 with Theorem 4.4

(Left-Definiteness). For N = 2 the assumption (4.4) reduces
W 0 & . : 0, = g s _ @ o
to: there is a ¥ €R such that 0 < Hpdgp * Moy, = Hjas, - sy
0 = 0 % 0 0 0 0
Snd 0% Mylgy * Wy 0 CUgyg ¥ Uglyg ¢~y -t pey,).

. ) 3

This implies that (-ug,u?) € Cl

implies that (by Theorem 4.6) there exist N; such that
S

1

definition of the N;'s and using the other Left-Definiteness hy-

f C:. As we saw above, this
2 * * :
n Sn + ¢ whenever n o> Nl’ n, > N,. Recalling the
3 - * “

* =Ny = 0.

pothesis (4.3) we conclude that N1

Third of all we compare Theorem 4.6 with Theorem 4.5
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(Gregu¥ et al.). The assumption that ¢ # Ci n ext K, =

int K, n ext K, implies that K, ¢ K,, and ¢ # ext K; n Ci

1
implies KZ ¢ Kl. This shows the existence of the N; from
Theorem 4.6; as before, a translation by a A% ¢ Ci n Ci shows
*

that N’l‘ = N; = 0.

Richardson's second article [15] possibly extends his result
to the three-parameter problem, and the claim is made there that
the method of proof extends to the N-parameter problem , as well.
It is difficult, however, to decide if the method is correct for
N > 3 because both of Richardson's articles {14,15] contain in-
accuracies. The simplest mistake is the assumption of convexity,
both implicitly in the pictures in [14] and explicitly in the
arguments in [15]. Also, the technique of cutting the eigen-
surfaces with planes, for the three-parameter problem, seems
cumbersome, if not impossible, to usc in the general N-parameter
problem. In spite of this, we must admit that it is possible that
useful work in Richardson [15] which remains to be discussed.

The result of Gregu¥ et al. can be generalized into an
N-parameter result, Theorem 4.8. This result has a Corollary 4.9
for the three-parameter problem, and an example is given to show

that the corollary is not vacuous.

Theorem 4.8: For N > 3 let there be integers 1 < k, & < N

such that

(4.6) (a) ak'1 > 0, aﬂ,1 >0 on [0,1].

— ot A W
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i (b) det(aij(xi))i#k,l is sign-definite
j*1,N

ka7

(4.7) det(aij(xi))itk 3 det(aij(xi))i¢2 are sign-definite
j#N j*N

(4.8) Ck n ext K, # ¢ and ext Kk n CR % @ .

2

Then NN .53 « 4 for all =
j=1 nj

Proof: Fix any choice of n, > 0,...,nN > 0, and define

- J - J - Y 5l
Sy ﬂj*ksnj, S, ﬂj*zsnj. Note that S, n S, ﬂj=1snj.

Using hypothesis (4.7) and Theorem 4.3 (Right-Definiteness), for

all X, € R there are unique ¢j,k(AN)’ ¢j,Q(AN)’ G USRS 12 (9

\ N
. defn
such that ¢R(XN) ps (¢1,k(lN),...,@N_l,k(XN),AN) € S, and

defn
¢%(AN) -

functions are analytic: Let Gj(xj;k) be the angle function for
h

[QI,Q(AN)"'"¢N-1,R(AN)’AN) & SE. We show that these

the jt problem. We want to solve the (N-1) -equations

& N-1
(WI(X),...,Wk_l(A), Wk+l(X),...,WN(l)) =0 ER where
A wj(x) Gj(l;k) - (njﬂ+8j). We know that ¢k(AN)

all AN EiRN, so it only remains to show that these solutions form

is a solution for

an analytic curve parametrized by AN' This will follow from

the Implicit Function Theorem, since the Jacobian is

1

L
, ) 3 e e
det(awi(l)/axj).*k = det(ui(l) Joui(xi)aij(xi)SIH eitxi,k)dxi)i*k
j#N e

1 1
= J . Iodet(aij(xi))i*k' II((ui(xi)sinzei(xi;A)dxi/ui(l))
j*N i%k

# 0 by hypothesis (4.7),
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where u, are integrating factors, as in the proof of Lemma 4.7.

Exactly the same argument applies to ¢£(AN).
By hypothesis (4.8) there exists X, A € RV such that

(i) X-ak* < 0 and X-az* has a positive maximum, and

(ii) A-a has a positive maximum and l-al* < 0. We can

k*
conclude, using the hypothesis (4.6)(a), that there are constants

t, t > 0 sufficiently large that ¢1’k(tXN) > tkl > ¢1’E(tAN)

and Ql,l(EéN) > £, > ¢l’k(§§N). By continuity there exists a

* ® *

Now consider the (N-2) problems Wi(l) = 0, 1 ® Kk, 1 ¢ &.

Using hypothesis (4.6)(b), Right-Definiteness implies that for

0 0 2 : ’ 0 0 N-2
all (XI,AN) € R®, there is a unique (XZ,...,XN_I) € R such
(3 0 0 i defn ;
that A~ = (Kl,...,AN) € rn¢k,i*lsni =~ 8. In particular, choose
| S Wy * | SN : %
kl ¢l’k(AN) QI,Q(XN)’ AN AN' Then, since ¢k(KN) & Sk e 8

and ¢2(X§) € SQ < S, the uniqueness of Ag, 1 % 1,1 & H
implies that ¢k(X;) = QE(A;) € S. This proves the existence

of an eigenvalue, as desired. B

Corollary 4.9: For the three-parameter problem, if aj; > 05

< 0; >0, > 03 > 0, @ay > 03 and ci N ext Ky # ¢,

812 €21 Ba2 o 32

2 1 2 3
ext K2 n C3 # ¢, then Snl n Snz n Sn3 £ ¢ ‘an > 0, n, > 0,
ny > 0.

Proof: Take . Note that (i) ay, > 0, a

31 > 0, and




31
dot(s;:)s40 5 = 8y 5 0
j*l1,3
[a A,
(ii) det(a;;);,, - 11 "12} 5, o and
j*3 %35 31
)y Ay,
dCt(aij)i¢3 = > 0, and apply the previous
j#3 [#21 %22

theorem. [

Example: The following satisfies the hypotheses of Corollary 4.7:

ag a, a4 {2 -2 -200
321 a22 323 = 3-2x2 2 2
azy az, 333 2 3-2x3 2

has (0,0,1) € ci N ext K, and (-180,100,1) € ext K

3
In this example lAl(xl’XZ’XS) = 40 - 8(x2+x3) + 200-(4-

(3-2x,) (3-2x5)) so that |Al(x1,l,1) = 624 > O,IAI(xl,0,0) =

-960 < 0. So Right-Definiteness is not satisfied. Since

n C,

{1,0,8) €& &, 5 N C;, by Theorem 5.2 (to be proven in Section 5)

1
the Left-Definiteness condition (4.4) is not satisfied, either.

This shows that the corollary is a new result, and so is the theorem

from which the corollary is derived.
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Section 5: Define cones K = {A EIRN: A-afx) < 0 for all x € [0,1]},

3 C = {A e rY: A-a(x) < 0 for all x € [0,1]}. Since we always assume
that not all of the aj are trivial, necessarily A-a(x) = 0
for all x €[0,1] implies A€ 3 = 3K. In particular, 0 € 9.
There is a technique which helps the geometrical investiga-

N and define

tion of the cones: Let a(x) = (al(x),...,aN(x)) € R
the row range T = {alx): 0 < x < 1} = (a closed subset of ]RN).
This idea, in an abstract setting involving quadratic forms, also
appears in Atkinson [1, p. 162].

Define, for any z €]RN, a set L (z) = {y € RV: y-z < 0}
where + is the Euclidean inner product. Whenever 1z # 0,

L (z) is a closed half-space; also L~ (0) =RY. When 1z ¢ 0,

1]

int L (2) {y: y-z < 0} 1is an open half-space. We see

immediately that K = f\YEFL_(Y). We also see that (i) when

0 € I', necessarily C = ¢, (ii) when 0 € I', necessarily

C = f\verint L (Y). This leads to

Theorem 5.1: Either C =¢ or C = int K.

Proof: When 0 € ' we must show that

N int L (Y) = C = int K = int f\YerL £Y) <

YET

(1) 1f A ecC, let -dsn A0

Y <0, |T| = maxYerlyl
ko

aXyer

and let B be the open ball about of radius d/(2|r]).

Then B e L (y) for all Yy € I, so that X € int K.
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(11) If AY ¢ int K, there is an open ball B about x®

with B c {WYeFL-(Y). Then A° € int L' (y) for all Y€ T, so
that 1% ¢ c. [ ]

Recall now condition (4.4), a Left-Definiteness assumption
about the coefficients aij for a system of Sturm-Liouville
problems, and the condition of Right-Definiteness, i.e. that the

determinant [Al(x) = lAI(xl,...,xN) be sign-definite. We have

Theorem 5.2: If f\?zlci + ¢, then Left-Definiteness (4.4)

implies Right-Definiteness.
Proof: For any N * N matrix B = (bij) let us define the

(b’i‘j) . ((-l)i+jdct(brs)r*i), the

S#j

cofactor caof B

(cof B)T, T = transpose, and the

adjugate adj B

rank r(B) = dim Range (B).

Since there is a 1Y € (1§=1C£, there is a rotation ) which
maps x° into the positive Xl-axis, so that the first column of
the matrix A(x) (O consists only of negative entries, where

A(x) = (aij(xi))?=1,?=l’ We will need the fact that

— B U —
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cof (A(x) ®) = cof(A(x))(®, which can be found in Eves [4, p. 156
#3.10.12 and p. 206 #4.6.7] using the fact that @ = @ L.

Suppose now that contrary to Right-Definiteness there is an
X such that |AlI(X) = 0, and proceed to show that there is a
contradiction. Denote B = A(X) C).

Since r(B) < N - 1 we can conclude that r(cof B) < 1,
using a fact about adj found in Eves [4, p. 155]. Left-
Definiteness (4.4) can be stated as: There exists uO €]RN such
that cof (A(x))u’ € (0,») X ... X (0,). This implies that

r(cof B) > 1, and this implies that r(cof B) = 1. There must

be a vector 0 # c € RN and constants al""’aN € R such that
67 CT
1
cof B = p . We then have
(o) cT
N
1
(cof A)INY = (cof B) O W = @) | € (0,0) x ... x (0,%).
*N
From this we conclude that Glse-n,0y are all non-zero and of

the same sign.
From elementary properties of the determinant, 0 = z§=1bilb;k
N * -
whenever k # 1 and det B = 21=1b11b11' Since 0 = det B, we
have for every Kk

N
0 = Faoabeably = o 22‘=1bilai.

i=]1"31" 1k




By the use of the rotation & we have bil < 0 for all i, and
all of the ui's are non-zero and of the same sign. Thus,

B 0 for all k. This gives 7r(B) = 0, and there is a
contradiction.
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